4 research outputs found

    Exploiting visual cues for safe and flexible cyber-physical production systems

    Get PDF
    Human workers are envisioned to work alongside robots and other intelligent factory modules, and fulfill supervision tasks in future smart factories. Technological developments, during the last few years, in the field of smart factory automation have introduced the concept of cyber-physical systems, which further expanded to cyber-physical production systems. In this context, the role of collaborative robots is significant and depends largely on the advanced capabilities of collision detection, impedance control, and learning new tasks based on artificial intelligence. The system components, collaborative robots, and humans need to communicate for collective decision-making. This requires processing of shared information keeping in consideration the available knowledge, reasoning, and flexible systems that are resilient to the real-time dynamic changes on the industry floor as well as within the communication and computer network infrastructure. This article presents an ontology-based approach to solve industrial scenarios for safety applications in cyber-physical production systems. A case study of an industrial scenario is presented to validate the approach in which visual cues are used to detect and react to dynamic changes in real time. Multiple scenarios are tested for simultaneous detection and prioritization to enhance the learning surface of the intelligent production system with the goal to automate safety-based decisions

    A Connective Framework for Social Collaborative Robotic System

    No full text
    Social intelligence in robotics appeared quite recently in the field of artificial intelligence (AI) and robotics. It is becoming increasingly evident that social and interaction skills are essentially required in any application where robots need to interact with humans. While the workspaces have transformed into fully shared spaces for performing collaborative tasks, human–robot collaboration (HRC) poses many challenges to the nature of interactions and social behavior among the collaborators. The complex dynamic environment coupled with uncertainty, anomaly, and threats raises questions about the safety and security of the cyber-physical production system (CPPS) in which HRC is involved. Interactions in the social sphere include both physical and psychological safety issues. In this work, we proposed a connective framework that can quickly respond to changing physical and psychological safety state of a CPPS. The first layer executes the production plan and monitors the changes through sensors. The second layer evaluates the situations in terms of their severity as anxiety by applying a quantification method that obtains support from a knowledge base. The third layer responds to the situations through the optimal allocation of resources. The fourth layer decides on the actions to mitigate the anxiety through the allocated resources suggested by the optimization layer. Experimental validation of the proposed method was performed on industrial case studies involving HRC. The results demonstrated that the proposed method improves the decision-making of a CPPS experiencing complex situations, ensures physical safety, and effectively enhances the productivity of the human–robot team by leveraging psychological comfort

    Human-Centric Digital Twins in Industry: A Comprehensive Review of Enabling Technologies and Implementation Strategies

    Get PDF
    The last decade saw the emergence of highly autonomous, flexible, re-configurable Cyber-Physical Systems. Research in this domain has been enhanced by the use of high-fidelity simulations, including Digital Twins, which are virtual representations connected to real assets. Digital Twins have been used for process supervision, prediction, or interaction with physical assets. Interaction with Digital Twins is enhanced by Virtual Reality and Augmented Reality, and Industry 5.0-focused research is evolving with the involvement of the human aspect in Digital Twins. This paper aims to review recent research on Human-Centric Digital Twins (HCDTs) and their enabling technologies. A systematic literature review is performed using the VOSviewer keyword mapping technique. Current technologies such as motion sensors, biological sensors, computational intelligence, simulation, and visualization tools are studied for the development of HCDTs in promising application areas. Domain-specific frameworks and guidelines are formed for different HCDT applications that highlight the workflow and desired outcomes, such as the training of AI models, the optimization of ergonomics, the security policy, task allocation, etc. A guideline and comparative analysis for the effective development of HCDTs are created based on the criteria of Machine Learning requirements, sensors, interfaces, and Human Digital Twin inputs
    corecore